Minimax Bounds for Sparse Pca with Noisy High-dimensional Data.

نویسندگان

  • Aharon Birnbaum
  • Iain M Johnstone
  • Boaz Nadler
  • Debashis Paul
چکیده

We study the problem of estimating the leading eigenvectors of a high-dimensional population covariance matrix based on independent Gaussian observations. We establish a lower bound on the minimax risk of estimators under the l2 loss, in the joint limit as dimension and sample size increase to infinity, under various models of sparsity for the population eigenvectors. The lower bound on the risk points to the existence of different regimes of sparsity of the eigenvectors. We also propose a new method for estimating the eigenvectors by a two-stage coordinate selection scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bounds for Sparse Pca with Noisy High - Dimensional Data

We study the problem of estimating the leading eigenvectors of a high-dimensional population covariance matrix based on independent Gaussian observations. We establish a lower bound on the minimax risk of estimators under the l2 loss, in the joint limit as dimension and sample size increase to infinity, under various models of sparsity for the population eigenvectors. The lower bound on the ris...

متن کامل

Minimax Bounds for Sparse Pca with Noisy High-dimensional Data by Aharon Birnbaum,

We study the problem of estimating the leading eigenvectors of a highdimensional population covariance matrix based on independent Gaussian observations. We establish a lower bound on the minimax risk of estimators under the l2 loss, in the joint limit as dimension and sample size increase to infinity, under various models of sparsity for the population eigenvectors. The lower bound on the risk...

متن کامل

Minimax Rates of Estimation for Sparse PCA in High Dimensions

We study sparse principal components analysis in the high-dimensional setting, where p (the number of variables) can be much larger than n (the number of observations). We prove optimal, non-asymptotic lower and upper bounds on the minimax estimation error for the leading eigenvector when it belongs to an lq ball for q ∈ [0, 1]. Our bounds are sharp in p and n for all q ∈ [0, 1] over a wide cla...

متن کامل

Rate-optimal Posterior Contraction for Sparse Pca

Principal component analysis (PCA) is possibly one of the most widely used statistical tools to recover a low rank structure of the data. In the high-dimensional settings, the leading eigenvector of the sample covariance can be nearly orthogonal to the true eigenvector. A sparse structure is then commonly assumed along with a low rank structure. Recently, minimax estimation rates of sparse PCA ...

متن کامل

Rate-optimal Posterior Contraction for Sparse Pca By

Principal component analysis (PCA) is possibly one of the most widely used statistical tools to recover a low-rank structure of the data. In the highdimensional settings, the leading eigenvector of the sample covariance can be nearly orthogonal to the true eigenvector. A sparse structure is then commonly assumed along with a low rank structure. Recently, minimax estimation rates of sparse PCA w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Annals of statistics

دوره 41 3  شماره 

صفحات  -

تاریخ انتشار 2013